

Jet-Veto Efficiency Study on Data using Zs

W. Andrews, D. Evans, F. Golf, J. Mulmenstadt, S. Padhi, Y. Tu, F. Wurthwein, A. Yagil -- UCSD D. Barge, C. Campagnari, P. Kalavase, D. Kovalskyi, V. Krutelyov, J. Ribnik -- UCSB L. Bauerdick, I. Bloch, K. Burkett, I. Fisk, Y. Gao, O. Gutsche, B. Hooberman -- FNAL

H→WW Working Meeting September 24, 2010

Outline

- The jet-veto signal efficiency and systematics
- The jet-veto efficiency calibration in Z data
 - Dataset and Z selections
 - Jet Et spectrum and JetVeto efficiency for jets with $3<|\eta|<5$
 - Jet Et spectrum and JetVeto efficiency for jets with $|\eta|$ <5
 - Results based on the uncorrected jets
 - JEC correction effects on the results
- The WW/Z jet-veto efficiency ratio on MC
- Summary

JetVeto Signal Efficiency

One way to estimate jet-veto signal efficiency

$$\begin{split} \epsilon_{WW}^{data} &= \epsilon_{Z}^{data} \times \frac{\epsilon_{WW}^{data}}{\epsilon_{Z}^{data}} \dots R_{WW/Z}^{data} \\ \epsilon_{WW}^{data} &= \epsilon_{Z}^{data} \times R_{WW/Z}^{MC} \end{split}$$

- Main question in estimating the systematic error on jet-veto signal efficiency is how well does the MC reproduces data in this ratio?
 - First we look at the Z data to see the data/MC matching
 - Select the MCs with good data/MC matching in the control region (Z), and assign half of the biggest difference in Rww/z as the systematic error on Rww/z
 - Pitfall: what if both MCs are wrong in predicting the Rww/z?
 However we don't have a good reason for this to happen
- ullet Propagate the errors on ϵ_Z^{data} and Rwwz for the systematic error on WW jet veto signal efficiency

3

Datasets

- Data
 - 3.1/pb corresponding to the certified JSON file provided on 09/11
- DY MCs (II: ee + mumu)
 - Pythia: /ZII_Spring10-START3X_V26_S09-v1/
 - Madgraph: /ZJets-madgraph_Spring10-START3X_V26_S09-v1/
 - NLO: /Zgamma_II_M20-mcatnlo_Spring10-START3X_V26_S09-v1/

WW MCs

- Pythia: /WW_Spring10-START3X_V26_S09-v1
- Madgraph: /VVJets-madgraph_Spring10-START3X_V26_S09-v1/
- NLO: /WWtoEE-mcatnlo_Spring10-START3X_V26_S09-v/
 - + EPlusMuMinus, EPlusTauMinus, MuMu, MuPlusEMinus,
 MuPlusTauMinus, TauTau, TauPlusEMinus, TauPlusMuMinus

Z Selections

- Z selection differences from WW reference
 - |M(II)- 91.1876| <15 GeV in EE/MM
 - If multiple hypo. are found, choose the one with m(II) closest to Z mass
 - Relax all jet-veto and MET cuts
 - Relax all trigger selections
 - Relax soft muon and third lepton vetos
- Number of Events after the Z selection: 629 (EE) 1109 (MM)

PF Jets $3 < \eta < 5$ (EE+MM)

- The jet-veto efficiency data/MC ratio is ~ I
- This is confirmed with JPT and Trk Jets
- It is safe to increase the jet veto to |eta|<5

PF Jets $|\eta|$ <5 (EE+MM)

- The jet energy spectrum of NLO MC doesn't agree with data
- The Data/MC ratio is close to 100% for Pythia and Madgraph
 - This may be because the MC are tuned well on the Z data

Compare Uncorrected Jets (|\eta|<5)

• The JetVeto efficiency on data and the data/MC ratio for 20 GeV(25GeV)

	JPT	PF	TrkJet
Efficiency on data	82%(86%)	82%(87%)	93.5%(95%)
data/MC Pythia	101%(100%)	99%(99%)	100%(100%)
data/MC Madgraph	98%(98.5%)	97.5%(96.5%)	100%(100%)

JPT/PF performs similarly without JEC. For TrkJet, JEC could be as large as 100%

Jet Energy Corrections

- JEC instructions from Konstantinos Kousouris
 - https://twiki.cern.ch/twiki/bin/view/CMS/ WorkBookJetEnergyCorrections
- Apply L2(Relative)+L3(Absolute) corrections on data/MC
- Apply small residual corrections on data
 - https://hypernews.cern.ch/HyperNews/CMS/get/JetMET/1017.html
 - http://indico.cern.ch/getFile.py/access?
 contribld=2&resId=0&materialId=slides&confld=99954

Compare Corrected Jets (|n|<5)

- Efficiency using trkJet is within 5% from the JPT/PF
- The data/MC agreement is similar to the performance on jets without JEC
- The jet veto efficiency at 20 GeV (25GeV) is a few % less than the uncorrected jet results

	JPT	PF	TrkJet
Efficiency on data	78%(83%)	78%(84%)	82%(86%)
data/MC Pythia	100%(100%)	98%(99%)	102(101%)
data/MC Madgraph	97%(97.5%)	97%(98%)	100%(100%)

WW/Z Jet-Veto Efficiency Ratio

• WW Selections: reference cuts without JetVeto and Z selections: Slide 4

JetVeto efficiency ratio WW/Z difference at 20GeV(25GeV)

	GenJet	JPT	PF
Pythia-Madgraph	11%(10%)	10%(8%)	9%(8%)
Madgraph-NLO	2%(2%)	1%(1%)	1%(2%)

• The large difference of Pythia from Madgraph/NLO may indicate that hard ISR is not modeled well in Pythia. This needs more investigation

Summary

- We introduced one jet-veto signal efficiency estimation method, based on jet-veto efficiency in z data and the WW/Z efficiency ratio in MC
- We studied the jet veto efficiency in the control region (Z) on data
 - The data/MC ratio for jets at HF region (3< $|\eta|$ <5) is ~ 100%, we propose to extend the jet veto region to $|\eta|$ <5
 - The jet energy spectrum in the NLO MC is softer than data
 - The jet veto efficiency data/MC is > 96% for pythia and madgraph
 - Performance on jets with JEC are similar as the uncorrected ones
- We looked into the WW/Z jet veto efficiency ratio in the MC
 - The madgraph and mc@nlo differs by only 2%
 - The WW/Z ratio in pythia differs from madgraph/nlo by ~10%. This needs more study to see if this difference is a really a physics effect rather than the issue with the generator or sample.